When.com Web Search

  1. Ad

    related to: turning functions into power series calculus khan academy practice

Search results

  1. Results From The WOW.Com Content Network
  2. Power series solution of differential equations - Wikipedia

    en.wikipedia.org/wiki/Power_series_solution_of...

    In mathematics, the power series method is used to seek a power series solution to certain differential equations. In general, such a solution assumes a power series with unknown coefficients, then substitutes that solution into the differential equation to find a recurrence relation for the coefficients.

  3. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    The partial sums of a power series are polynomials, the partial sums of the Taylor series of an analytic function are a sequence of converging polynomial approximations to the function at the center, and a converging power series can be seen as a kind of generalized polynomial with infinitely many terms. Conversely, every polynomial is a power ...

  4. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  5. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    With hindsight, however, it is considered the first general theorem of calculus to be discovered. [1] The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse ...

  6. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  7. Analytic continuation - Wikipedia

    en.wikipedia.org/wiki/Analytic_continuation

    In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function.Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Formal power series are used in combinatorics to describe and study sequences that are otherwise difficult to handle, for example, using the method of generating functions. The Hilbert–Poincaré series is a formal power series used to study graded algebras.

  9. Function series - Wikipedia

    en.wikipedia.org/wiki/Function_series

    There exist many types of convergence for a function series, such as uniform convergence, pointwise convergence, and convergence almost everywhere.Each type of convergence corresponds to a different metric for the space of functions that are added together in the series, and thus a different type of limit.