Search results
Results From The WOW.Com Content Network
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names, [54] to provide a concise encoding of alphabetic strings, [55] or as the basis for a form of gematria. [56] Compact notation for ternary. 28: Months timekeeping. 30: Trigesimal
Base36 is a binary-to-text encoding scheme that represents binary data in an ASCII string format by translating it into a radix-36 representation. The choice of 36 is convenient in that the digits can be represented using the Arabic numerals 0–9 and the Latin letters A–Z (the ISO basic Latin alphabet). Each base36 digit needs less than 6 ...
If X is a Banach space with a Schauder basis {e n} n ≥ 1 such that the biorthogonal functionals are a basis of the dual, that is to say, a Banach space with a shrinking basis, then the space K(X) admits a basis formed by the rank one operators e* j ⊗ e k : v → e* j (v) e k, with the same ordering as before. [17]
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.
Quinary (base 5 or pental [1] [2] [3]) is a numeral system with five as the base.A possible origination of a quinary system is that there are five digits on either hand.. In the quinary place system, five numerals, from 0 to 4, are used to represent any real number.
In theoretical and computational chemistry, a basis set is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
Zermelo–Fraenkel set theory with the axiom of choice guarantees the existence of a basis of this vector space: there exists a set B of real numbers such that every real number can be written uniquely as a finite linear combination of elements of this set, using rational coefficients only, and such that no element of B is a rational linear ...