Search results
Results From The WOW.Com Content Network
Back pressure is the term used for the hydraulic pressure required to create a flow through a chromatography column in high-performance liquid chromatography, the term deriving from the fact that it is generated by the resistance of the column, and exerts its influence backwards on the pump that must supply the flow.
Heat energy is supplied to the system via a boiler where the working fluid (typically water) is converted to a high-pressure gaseous state (steam) in order to turn a turbine. After passing over the turbine the fluid is allowed to condense back into a liquid state as waste heat energy is rejected before being returned to boiler, completing the ...
A further lowering of the back pressure changes and weakens the wave pattern in the jet. Eventually the back pressure becomes low enough so that it is now equal to the pressure at the nozzle exit. In this case, the waves in the jet disappear altogether (figure 1f), and the jet becomes uniformly supersonic.
Modern large wind turbines achieve peak values for C P in the range of 0.45 to 0.50, [2] [full citation needed] about 75–85% of the theoretically possible maximum. In high wind speed, where the turbine is operating at its rated power, the turbine rotates (pitches) its blades to lower C P to protect itself from damage.
With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.
Whereas the streamtube area is reduced by a propeller, it is expanded by a wind turbine. For either application, a highly simplified but useful approximation is the Rankine–Froude "momentum" or "actuator disk" model (1865, [1] 1889 [2]). This article explains the application of the "Betz limit" to the efficiency of a ground-based wind turbine.
It is a no-load condition in a gas turbine, turbocharger or industrial axial compressor but overload in an industrial centrifugal compressor. [29] Hiereth et al. [30] shows a turbocharger compressor full-load, or maximum fuelling, curve runs up close to the surge line. A gas turbine compressor full-load line also runs close to the surge line.
As an example calculation using the above equation, assume that the propellant combustion gases are: at an absolute pressure entering the nozzle p = 7.0 MPa and exit the rocket exhaust at an absolute pressure p e = 0.1 MPa; at an absolute temperature of T = 3500 K; with an isentropic expansion factor γ = 1.22 and a molar mass M = 22 kg/kmol.