When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: ΣH = 0 and ΣV = 0, and the torque a third equation: Στ = 0. That is, to solve statically determinate equilibrium problems in two-dimensions, three equations are used.

  3. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    For the analogous statement in terms of torque, German mathematician Georg Hamel coined the name Boltzmann Axiom. [6] [7] This axiom is equivalent to the symmetry of the Cauchy stress tensor. For the resultants of the stresses do not exert a torque on the volume element, the resultant force must lead through the center of the volume element.

  4. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  5. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    The equation for torque is very important in angular mechanics. Torque is rotational force and is determined by a cross product. This makes it a pseudovector. = where is torque, r is radius, and is a cross product. Another variation of this equation is:

  6. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    Using the center of mass and inertia matrix, the force and torque equations for a single rigid body take the form =, = [] + [], and are known as Newton's second law of motion for a rigid body. The dynamics of an interconnected system of rigid bodies, B i , j = 1, ..., M , is formulated by isolating each rigid body and introducing the ...

  7. Couple (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Couple_(mechanics)

    The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces

  8. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line. Unfortunately, that ...

  9. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.