Search results
Results From The WOW.Com Content Network
For a two-dimensional situation with horizontal and vertical forces, the sum of the forces requirement is two equations: ΣH = 0 and ΣV = 0, and the torque a third equation: Στ = 0. That is, to solve statically determinate equilibrium problems in two-dimensions, three equations are used.
For the analogous statement in terms of torque, German mathematician Georg Hamel coined the name Boltzmann Axiom. [6] [7] This axiom is equivalent to the symmetry of the Cauchy stress tensor. For the resultants of the stresses do not exert a torque on the volume element, the resultant force must lead through the center of the volume element.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is
The equation for torque is very important in angular mechanics. Torque is rotational force and is determined by a cross product. This makes it a pseudovector. = where is torque, r is radius, and is a cross product. Another variation of this equation is:
Using the center of mass and inertia matrix, the force and torque equations for a single rigid body take the form =, = [] + [], and are known as Newton's second law of motion for a rigid body. The dynamics of an interconnected system of rigid bodies, B i , j = 1, ..., M , is formulated by isolating each rigid body and introducing the ...
The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line. Unfortunately, that ...
The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.