When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    In mathematics, the nth-term test for divergence [1] ... The harmonic series is a classic example of a divergent series whose terms approach zero in the limit as ...

  3. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    2 Examples. 3 Convergence of products. 4 See also. 5 References. 6 Further reading. ... This is also known as the nth-term test, test for divergence, or the ...

  4. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  5. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    The n th term describes the length of the n th run A000002: Euler's totient function φ(n) 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, ... φ(n) is the number of positive integers not greater than n that are coprime with n. A000010: Lucas numbers L(n) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... L(n) = L(n − 1) + L(n − 2) for n ≥ 2, with L(0) = 2 and L(1 ...

  6. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    [1] [2] Every term of the harmonic series after the first is the harmonic mean of the neighboring terms, so the terms form a harmonic progression; the phrases harmonic mean and harmonic progression likewise derive from music. [2] Beyond music, harmonic sequences have also had a certain popularity with architects.

  7. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    In linear recurrences, the n th term is equated to a linear function of the previous terms. A famous example is the recurrence for the Fibonacci numbers , F n = F n − 1 + F n − 2 {\displaystyle F_{n}=F_{n-1}+F_{n-2}} where the order k {\displaystyle k} is two and the linear function merely adds the two previous terms.

  8. Integer sequence - Wikipedia

    en.wikipedia.org/wiki/Integer_sequence

    Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, (sequence A000396 in the OEIS), even though we do not have a formula for the nth perfect number.

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For example, consider the sum: 2 + 5 + 8 + 11 + 14 = 40 {\displaystyle 2+5+8+11+14=40} This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: