When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neutron howitzer - Wikipedia

    en.wikipedia.org/wiki/Neutron_howitzer

    It was discovered in the 1930s that alpha radiation that strikes the beryllium nucleus would release neutrons. The high speed of the alpha is sufficient to overcome the relatively low Coulomb barrier of the beryllium nucleus, the repulsive force due to the positive charge of the nucleus, which contains only four protons, allowing for fusion of ...

  3. Isotopes of beryllium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_beryllium

    toward alpha decay, which is favored due to the extremely tight binding of 4 He nuclei. The half-life for the decay of 8 Be is only 81.9(3.7) attoseconds. Beryllium is prevented from having a stable isotope with 4 protons and 6 neutrons by the very lopsided neutron–proton ratio for such a light element. Nevertheless, this isotope, 10 Be

  4. Beryllium - Wikipedia

    en.wikipedia.org/wiki/Beryllium

    The single primordial beryllium isotope 9 Be also undergoes a (n,2n) neutron reaction with neutron energies over about 1.9 MeV, to produce 8 Be, which almost immediately breaks into two alpha particles. Thus, for high-energy neutrons, beryllium is a neutron multiplier, releasing more neutrons than it absorbs. This nuclear reaction is: [19] 9 4 Be

  5. Beryllium-8 - Wikipedia

    en.wikipedia.org/wiki/Beryllium-8

    Beryllium-8 (8 Be, Be-8) is a radionuclide with 4 neutrons and 4 protons. It is an unbound resonance and nominally an isotope of beryllium . It decays into two alpha particles with a half-life on the order of 8.19 × 10 −17 seconds.

  6. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    An alpha particle is identical to the nucleus of a helium-4 atom, which consists of two protons and two neutrons. It has a charge of +2 e and a mass of 4 Da. For example, uranium-238 decays to form thorium-234.

  7. Neutron emission - Wikipedia

    en.wikipedia.org/wiki/Neutron_emission

    Two examples of isotopes that emit neutrons are beryllium-13 (decaying to beryllium-12 with a mean life 2.7 × 10 −21 s) and helium-5 (helium-4, 7 × 10 −22 s). [ 1 ] In tables of nuclear decay modes, neutron emission is commonly denoted by the abbreviation n .

  8. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    A popular source of the latter type is radioactive antimony-124 plus beryllium, a system with a half-life of 60.9 days, which can be constructed from natural antimony (which is 42.8% stable antimony-123) by activating it with neutrons in a nuclear reactor, then transported to where the neutron source is needed.

  9. Neutron radiation - Wikipedia

    en.wikipedia.org/wiki/Neutron_radiation

    Neutron radiation was discovered from observing an alpha particle colliding with a beryllium nucleus, which was transformed into a carbon nucleus while emitting a neutron, Be(α, n)C. The combination of an alpha particle emitter and an isotope with a large (α, n) nuclear reaction probability is still a common neutron source.