When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  3. Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Hermitian_matrix

    If a square matrix equals the product of a matrix with its conjugate transpose, that is, =, then is a Hermitian positive semi-definite matrix. Furthermore, if B {\displaystyle B} is row full-rank, then A {\displaystyle A} is positive definite.

  4. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  5. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  6. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    The general form of an inner product on is known as the Hermitian form and is given by , = † = † ¯, where is any Hermitian positive-definite matrix and † is the conjugate transpose of . For the real case, this corresponds to the dot product of the results of directionally-different scaling of the two vectors, with positive scale factors ...

  7. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    The principal square root of a real positive semidefinite matrix is real. [3] The principal square root of a positive definite matrix is positive definite; more generally, the rank of the principal square root of A is the same as the rank of A. [3] The operation of taking the principal square root is continuous on this set of matrices. [4]

  8. Trace inequality - Wikipedia

    en.wikipedia.org/wiki/Trace_inequality

    Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint , in which case similar definitions apply, but we discuss ...

  9. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    In the QR algorithm for a Hermitian matrix (or any normal matrix), the orthonormal eigenvectors are obtained as a product of the Q matrices from the steps in the algorithm. [11] (For more general matrices, the QR algorithm yields the Schur decomposition first, from which the eigenvectors can be obtained by a backsubstitution procedure. [13])