Search results
Results From The WOW.Com Content Network
The VMOS structure has a V-groove at the gate region. A VMOS (/ ˈ v iː m ɒ s /) (vertical metal oxide semiconductor or V-groove MOS) transistor is a type of metal–oxide–semiconductor field-effect transistor ().
The tunnel field-effect transistor (TFET) is an experimental type of transistor. Even though its structure is very similar to a metal–oxide–semiconductor field-effect transistor ( MOSFET ), the fundamental switching mechanism differs, making this device a promising candidate for low power electronics .
LDMOS (laterally-diffused metal-oxide semiconductor) [1] is a planar double-diffused MOSFET (metal–oxide–semiconductor field-effect transistor) used in amplifiers, including microwave power amplifiers, RF power amplifiers and audio power amplifiers. These transistors are often fabricated on p/p + silicon epitaxial layers.
Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining millions or billions of MOS transistors onto a single chip. VLSI began in the 1970s when MOS integrated circuit (metal oxide semiconductor) chips were developed and then widely adopted, enabling complex semiconductor and telecommunications technologies.
An insulated-gate bipolar transistor (IGBT) is a three-terminal power semiconductor device primarily forming an electronic switch. It was developed to combine high efficiency with fast switching. It was developed to combine high efficiency with fast switching.
A heterojunction bipolar transistor (HBT) is a type of bipolar junction transistor (BJT) that uses different semiconductor materials for the emitter and base regions, creating a heterojunction. The HBT improves on the BJT in that it can handle signals of very high frequencies, up to several hundred GHz .
In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated (fully on) region of operation and the resulting slow turn-off behavior. [ 2 ]
The buffer in this device is exactly the same of what was used in RGB video output stages in TV circuits in the way that the upper NPN transistor quickly rises a cathode capacitance with a relatively high load resistor on the lower NPN transistor, while the lower NPN transistor controls the turning on of the output voltage.