Ads
related to: consistent system of linear equations
Search results
Results From The WOW.Com Content Network
In contrast, a linear or non linear equation system is called inconsistent if there is no set of values for the unknowns that satisfies all of the equations. [1] [2] If a system of equations is inconsistent, then the equations cannot be true together leading to contradictory information, such as the false statements 2 = 1, or + = and + = (which ...
Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.
In linear systems, indeterminacy occurs if and only if the number of independent equations (the rank of the augmented matrix of the system) is less than the number of unknowns and is the same as the rank of the coefficient matrix. For if there are at least as many independent equations as unknowns, that will eliminate any stretches of overlap ...
Any system of linear equations can be written as a matrix equation. The previous system of equations (in Diagram #1) can be written as follows: [] [] = [] Notice that the rows of the coefficient matrix (corresponding to equations) outnumber the columns (corresponding to unknowns), meaning that the system is overdetermined.
It is inconsistent if and only if 0 = 1 is a linear combination (with polynomial coefficients) of the equations (this is Hilbert's Nullstellensatz). If an underdetermined system of t equations in n variables (t < n) has solutions, then the set of all complex solutions is an algebraic set of dimension at least n - t. If the underdetermined ...
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...