When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    So, to find the acceleration due to gravity at sea level, substitute the values of the gravitational constant, G, the Earth's mass (in kilograms), m 1, and the Earth's radius (in metres), r, to obtain the value of g: [20]

  4. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    For example, the atomic mass constant is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.

  5. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  6. Planck units - Wikipedia

    en.wikipedia.org/wiki/Planck_units

    In SI units, the values of c, h, e and k B are exact and the values of ε 0 and G in SI units respectively have relative uncertainties of 1.6 × 10 −10 ‍ [16] and 2.2 × 10 −5. [17] Hence, the uncertainties in the SI values of the Planck units derive almost entirely from uncertainty in the SI value of G.

  7. Stoney units - Wikipedia

    en.wikipedia.org/wiki/Stoney_units

    The constants that Stoney used to define his set of units is the following: [1] [2] c, the speed of light in vacuum, G, the gravitational constant, k e, the Coulomb constant, e, the charge on the electron. Later authors typically replace the Coulomb constant with ⁠ 1 / 4πε 0 ⁠. [3] [4]

  8. World Geodetic System - Wikipedia

    en.wikipedia.org/wiki/World_Geodetic_System

    The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × 10 −6 rad/s. [11]

  9. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    The "mass of the earth in gravitational measure" is stated as "9.81996×6370980 2" in The New Volumes of the Encyclopaedia Britannica (Vol. 25, 1902) with a "logarithm of earth's mass" given as "14.600522" [3.985 86 × 10 14]. This is the gravitational parameter in m 3 ·s −2 (modern value 3.986 00 × 10 14) and not the absolute mass.