When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth's surface feels less gravity when the elevation is higher. The following formula approximates the Earth's gravity variation with altitude:

  3. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    After converting to SI units, Cavendish's value for the Earth's density, 5.448 g cm −3, gives G = 6.74 × 10 −11 m 3 kg –1 s −2, [24] which differs by only 1% from the 2014 CODATA value of 6.67408 × 10 −11 m 3 kg −1 s −2. [25] Today, physicists often use units where the gravitational constant takes a different form.

  4. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant appears in the Einstein field equations of general relativity, [4] [5] + =, where G μν is the Einstein tensor (not the gravitational constant despite the use of G), Λ is the cosmological constant, g μν is the metric tensor, T μν is the stress–energy tensor, and κ is the Einstein gravitational constant, a ...

  5. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G ( m 1 + m 2 ) , or as GM when one body is much larger than the other: μ = G ( M + m ) ≈ G M . {\displaystyle \mu =G(M+m)\approx GM.}

  6. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    The Stoney unit system uses the following defining constants: c, G, k e, e, where c is the speed of light, G is the gravitational constant, k e is the Coulomb constant, and e is the elementary charge. George Johnstone Stoney's unit system preceded that of Planck by 30 years.

  7. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    Near the surface of the Earth, for example, we assume that the acceleration due to gravity is a constant g = 9.8 m/s 2 (standard gravity). In this case, a simple expression for gravitational potential energy can be derived using the W = Fd equation for work , and the equation W F = − Δ U F . {\displaystyle W_{F}=-\Delta U_{F}.}

  8. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    1.438 776 877... × 10 −2 m⋅K: 0 [12] ‍ [e] Wien wavelength displacement law constant: 2.897 771 955... × 10 −3 m⋅K: 0 [13] ′ ‍ [f] Wien frequency displacement law constant: 5.878 925 757... × 10 10 Hz⋅K −1: 0 [14] Wien entropy displacement law constant 3.002 916 077... × 10 −3 m⋅K: 0

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.