Search results
Results From The WOW.Com Content Network
Equal chords are subtended by equal angles from the center of the circle. A chord that passes through the center of a circle is called a diameter and is the longest chord of that specific circle. If the line extensions (secant lines) of chords AB and CD intersect at a point P, then their lengths satisfy AP·PB = CP·PD (power of a point theorem).
More generally, an angle subtended by an arc of a curve is the angle subtended by the corresponding chord of the arc. For example, a circular arc subtends the central angle formed by the two radii through the arc endpoints. If an angle is subtended by a straight or curved segment, the segment is said to subtend the angle.
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
It can also be defined as the angle subtended at a point on the circle by two given points on the circle. Equivalently, an inscribed angle is defined by two chords of the circle sharing an endpoint. The inscribed angle theorem relates the measure of an inscribed angle to that of the central angle intercepting the same arc .
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
Diagram of an educational toy that balances on a point: the center of mass (C) settles below its support (P) A body's center of gravity is the point around which the resultant torque due to gravity forces vanishes. [13] Where a gravity field can be considered to be uniform, the mass-center and the center-of-gravity will be the same.
Angular momentum about a position point r 0, L, J, S = Most of the time we can set r 0 = 0 if particles are orbiting about axes intersecting at a common point. kg m 2 s −1: M L 2 T −1: Moment of a force about a position point r 0, Torque. τ, M
Mass Point - A mass point is a pair (,), also written as , including a mass, , and an ordinary point, on a plane. Coincidence - We say that two points m P {\displaystyle mP} and n Q {\displaystyle nQ} coincide if and only if m = n {\displaystyle m=n} and P = Q {\displaystyle P=Q} .