Search results
Results From The WOW.Com Content Network
In geometry, space partitioning is the process of dividing an entire space (usually a Euclidean space) into two or more disjoint subsets (see also partition of a set). In other words, space partitioning divides a space into non-overlapping regions. Any point in the space can then be identified to lie in exactly one of the regions.
Let be a metric space with distance function .Let be a set of indices and let () be a tuple (indexed collection) of nonempty subsets (the sites) in the space .The Voronoi cell, or Voronoi region, , associated with the site is the set of all points in whose distance to is not greater than their distance to the other sites , where is any index different from .
Binary space partitioning arose from computer graphics needing to rapidly draw three-dimensional scenes composed of polygons. A simple way to draw such scenes is the painter's algorithm , which produces polygons in order of distance from the viewer, back to front, painting over the background and previous polygons with each closer object.
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval [0,1] such that for every point : there is a neighbourhood of x {\displaystyle x} where all but a finite number of the functions of R {\displaystyle R} are 0, and
Line arrangements. In discrete geometry, an arrangement is the decomposition of the d-dimensional linear, affine, or projective space into connected cells of different dimensions, induced by a finite collection of geometric objects, which are usually of dimension one less than the dimension of the space, and often of the same type as each other, such as hyperplanes or spheres.
Arrangement (space partition), a partition of the plane given by overlaid curves or of a higher dimensional space by overlaid surfaces, without requiring the curves or surfaces to be flat; Mathematical Bridge, a bridge in Cambridge, England whose beams form an arrangement of tangent lines to its arch
In the case of Euclidean space, this approach encompasses spatial index or spatial access methods. Several space-partitioning methods have been developed for solving the NNS problem. Perhaps the simplest is the k-d tree, which iteratively bisects the search space into two regions containing half of the points of the parent region. Queries are ...
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set,