Search results
Results From The WOW.Com Content Network
The pseudoinverse facilitates the statement and proof of results in linear algebra. The pseudoinverse is defined for all rectangular matrices whose entries are real or complex numbers. Given a rectangular matrix with real or complex entries, its pseudoinverse is unique. It can be computed using the singular value decomposition.
In mathematics, a block matrix pseudoinverse is a formula for the pseudoinverse of a partitioned matrix. This is useful for decomposing or approximating many algorithms updating parameters in signal processing , which are based on the least squares method.
where X + is the Moore–Penrose pseudoinverse of X. Although this equation is correct and can work in many applications, it is not computationally efficient to invert the normal-equations matrix (the Gramian matrix). An exception occurs in numerical smoothing and differentiation where an analytical expression is required.
Mathematical applications of the SVD include computing the pseudoinverse, matrix approximation, and determining the rank, range, and null space of a matrix. The SVD is also extremely useful in all areas of science, engineering , and statistics , such as signal processing , least squares fitting of data, and process control .
The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of matrices than invertible matrices. Generalized inverses can be defined in any mathematical structure that involves associative multiplication, that is, in a semigroup .
In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.
2. The upper triangle of the matrix S is destroyed while the lower triangle and the diagonal are unchanged. Thus it is possible to restore S if necessary according to for k := 1 to n−1 do ! restore matrix S for l := k+1 to n do S kl := S lk endfor endfor. 3. The eigenvalues are not necessarily in descending order.
The Drazin inverse of a matrix of index 0 or 1 is called the group inverse or {1,2,5}-inverse and denoted A #. The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P.