Search results
Results From The WOW.Com Content Network
In biochemistry, the Luebering–Rapoport pathway (also called the Luebering–Rapoport shunt) is a metabolic pathway in mature erythrocytes involving the formation of 2,3-bisphosphoglycerate (2,3-BPG), which regulates oxygen release from hemoglobin and delivery to tissues. 2,3-BPG, the reaction product of the Luebering–Rapoport pathway was first described and isolated in 1925 by the ...
The normal glycolytic pathway generates 1,3-BPG, which may be dephosphorylated by phosphoglycerate kinase (PGK), generating ATP, or it may be shunted into the Luebering-Rapoport pathway, where bisphosphoglycerate mutase catalyzes the transfer of a phosphoryl group from C1 to C2 of 1,3-BPG, giving 2,3-BPG. 2,3-BPG, the most concentrated organophosphate in the erythrocyte, forms 3-PG by the ...
2,3-Bisphosphoglycerate 3-phosphatase (EC 3.1.3.80, ... This reaction is a shortcut in the Luebering-Rapoport pathway. References External links. 2,3 ...
The level of 2,3-bisphosphoglycerate is elevated: 1,3-bisphosphoglycerate, a precursor of phosphoenolpyruvate which is the substrate for Pyruvate kinase, is increased and so the Luebering-Rapoport pathway is overactivated. This led to a rightward shift in the oxygen dissociation curve of hemoglobin (i.e. it decreases the hemoglobin affinity for ...
He described the role of the 2,3-bisphosphoglycerate for the anaerobic production of energy in the erythrocytes (Luebering-Rapoport pathway). Jane Luebering was a technical assistant of Rapoport. Rapoport detected the eminent importance of the ATP concentration for the survivability of the erythrocytes.
The systematic name of this enzyme class is 2,3-bisphospho-D-glycerate 2-phosphohydrolase. Other names in common use include 2,3-diphosphoglycerate phosphatase , diphosphoglycerate phosphatase , 2,3-diphosphoglyceric acid phosphatase , 2,3-bisphosphoglycerate phosphatase , and glycerate-2,3-diphosphate phosphatase .
Post-translational modification (2 C, 126 P) Pages in category "Biochemical reactions" ... Luebering–Rapoport pathway; M. Malate–aspartate shuttle; Methanogenesis;
A linear pathway can be studied in various ways. Multiple computer simulations can be run to try to understand the pathway's behavior. Another way to understand the properties of a linear pathway is to take a more analytical approach. Analytical solutions can be derived for the steady-state if simple mass-action kinetics are assumed.