Search results
Results From The WOW.Com Content Network
In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.
The name "valence band" was coined by analogy to chemistry, since in semiconductors (and insulators) the valence band is built out of the valence orbitals. In a metal or semimetal, the Fermi level is inside of one or more allowed bands. In semimetals the bands are usually referred to as "conduction band" or "valence band" depending on whether ...
The impact of valence theory declined during the 1960s and 1970s as molecular orbital theory grew in usefulness as it was implemented in large digital computer programs. Since the 1980s, the more difficult problems, of implementing valence bond theory into computer programs, have been solved largely, and valence bond theory has seen a ...
The band gap (usually given the symbol ) gives the energy difference between the lower edge of the conduction band and the upper edge of the valence band. Each semiconductor has different electron affinity and band gap values. For semiconductor alloys it may be necessary to use Vegard's law to calculate these values.
An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap. This is analogous to a filled trap releasing an electron into the valence band. A captured hole can be released into the valence band. Analogous to the capture of an electron from the valence band.
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron (and the electron hole in the valence band) are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the ...
A valence band electron in a semiconductor is still essentially a free electron in a delimited energy range (i.e. only a "rare" high energy collision that implies a change of band would behave differently); the independent electron approximation is essentially still valid (i.e. no electron–electron scattering), where instead the hypothesis ...