Search results
Results From The WOW.Com Content Network
That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a rectangle follows directly from the basic properties of area, and is sometimes taken as a ...
The name of the square function shows its importance in the definition of the area: it comes from the fact that the area of a square with sides of length l is equal to l 2. The area depends quadratically on the size: the area of a shape n times larger is n 2 times greater.
In classical times, the second power was described in terms of the area of a square, as in the above formula. This led to the use of the term square to mean raising to the second power. The area can also be calculated using the diagonal d according to =. In terms of the inradius r, the area of the square is
Consider completing the square for the equation + =. Since x 2 represents the area of a square with side of length x, and bx represents the area of a rectangle with sides b and x, the process of completing the square can be viewed as visual manipulation of rectangles.
In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary. The result was first described by Georg Alexander Pick in 1899. [2] It was popularized in English by Hugo Steinhaus in the 1950 edition of his book Mathematical ...
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The large square is divided into a left and right rectangle. A triangle is constructed that has half the area of the left rectangle. Then another triangle is constructed that has half the area of the square on the left-most side. These two triangles are shown to be congruent, proving this square has the same area as the left rectangle. This ...