When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  3. Principal quantum number - Wikipedia

    en.wikipedia.org/wiki/Principal_quantum_number

    The four quantum numbers n, ℓ, m, and s specify the complete and unique quantum state of a single electron in an atom, called its wave function or orbital. Two electrons belonging to the same atom cannot have the same values for all four quantum numbers, due to the Pauli exclusion principle .

  4. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    The principal quantum number (n) is shown at the right of each row. In quantum mechanics, the azimuthal quantum number ℓ is a quantum number for an atomic orbital that determines its orbital angular momentum and describes aspects of the angular shape of the orbital.

  5. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    In atomic physics, a magnetic quantum number is a quantum number used to distinguish quantum states of an electron or other particle according to its angular momentum along a given axis in space. The orbital magnetic quantum number ( m l or m [ a ] ) distinguishes the orbitals available within a given subshell of an atom.

  6. Multiplicative quantum number - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_quantum_number

    In quantum field theory, multiplicative quantum numbers are conserved quantum numbers of a special kind. A given quantum number q is said to be additive if in a particle reaction the sum of the q-values of the interacting particles is the same before and after the reaction. Most conserved quantum numbers are additive in this sense; the electric ...

  7. Atoms in molecules - Wikipedia

    en.wikipedia.org/wiki/Atoms_in_molecules

    In quantum chemistry, the quantum theory of atoms in molecules (QTAIM), sometimes referred to as atoms in molecules (AIM), is a model of molecular and condensed matter electronic systems (such as crystals) in which the principal objects of molecular structure - atoms and bonds - are natural expressions of a system's observable electron density distribution function.

  8. Spectroscopic notation - Wikipedia

    en.wikipedia.org/wiki/Spectroscopic_notation

    This notation is used to specify electron configurations and to create the term symbol for the electron states in a multi-electron atom. When writing a term symbol, the above scheme for a single electron's orbital quantum number is applied to the total orbital angular momentum associated to an electron state.

  9. Hund's rules - Wikipedia

    en.wikipedia.org/wiki/Hund's_rules

    In atomic physics and quantum chemistry, Hund's rules refers to a set of rules that German physicist Friedrich Hund formulated around 1925, which are used to determine the term symbol that corresponds to the ground state of a multi-electron atom. The first rule is especially important in chemistry, where it is often referred to simply as Hund's ...