Search results
Results From The WOW.Com Content Network
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states: Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof ...
The interior perpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices). Thus any line through a ...
It is a theorem in Euclidean geometry that the three interior angle bisectors of a triangle meet in a single point. In Euclid's Elements, Proposition 4 of Book IV proves that this point is also the center of the inscribed circle of the triangle. The incircle itself may be constructed by dropping a perpendicular from the incenter to one of the ...
Similar triangles provide the basis for many synthetic (without the use of coordinates) proofs in Euclidean geometry. Among the elementary results that can be proved this way are: the angle bisector theorem, the geometric mean theorem, Ceva's theorem, Menelaus's theorem and the Pythagorean theorem.
In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex A {\displaystyle A} is called the A {\displaystyle A} -mixtilinear incircle.
In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [1] [2] Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva, who proved a well-known theorem about cevians which also bears his name. [3]
Synthetic proofs of geometric theorems make use of auxiliary constructs (such as helping lines) and concepts such as equality of sides or angles and similarity and congruence of triangles. Examples of such proofs can be found in the articles Butterfly theorem, Angle bisector theorem, Apollonius' theorem, British flag theorem, Ceva's theorem ...