Search results
Results From The WOW.Com Content Network
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
A simple bimodal distribution. Figure 3. A bimodal distribution. Note that only the largest peak would correspond to a mode in the strict sense of the definition of mode. In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak.
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
Such a continuous distribution is called multimodal (as opposed to unimodal). In symmetric unimodal distributions, such as the normal distribution, the mean (if defined), median and mode all coincide. For samples, if it is known that they are drawn from a symmetric unimodal distribution, the sample mean can be used as an estimate of the ...
A bimodal distribution. Figure 3. A bivariate, multimodal distribution Figure 4. A non-example: a unimodal distribution, that would become multimodal if conditioned on either x or y. In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local
It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc. The univariate continuous uniform distribution on an interval [a, b] has the property that all sub-intervals of the same length are equally likely. Binomial distribution with normal approximation for n = 6 and p = 0.5
If X has a standard uniform distribution, then Y = X n has a beta distribution with parameters (1/n,1). As such, The Irwin–Hall distribution is the sum of n i.i.d. U(0,1) distributions. The Bates distribution is the average of n i.i.d. U(0,1) distributions. The standard uniform distribution is a special case of the beta distribution, with ...
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...