When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  4. Hungarian mathematics - Wikipedia

    en.wikipedia.org/wiki/Hungarian_mathematics

    Hungarian mathematics began its rise to prominence in the early 1800s with János Bolyai, one of the creators of non-Euclidean geometry, and his father Farkas Bolyai. Though they were largely ignored during their lifetimes, János Bolyai's groundbreaking work on hyperbolic geometry would later be recognized as foundational to modern mathematics.

  5. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 ‍ / ‍ Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...

  6. János Bolyai - Wikipedia

    en.wikipedia.org/wiki/János_Bolyai

    János Bolyai (Hungarian: [ˈjaːnoʃ ˈboːjɒi]; 15 December 1802 – 27 January 1860) or Johann Bolyai, [2] was a Hungarian mathematician who developed absolute geometry—a geometry that includes both Euclidean geometry and hyperbolic geometry. The discovery of a consistent alternative geometry that might correspond to the structure of the ...

  7. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...

  8. Hyperbolic metric space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_metric_space

    In mathematics, a hyperbolic metric space is a metric space satisfying certain metric relations (depending quantitatively on a nonnegative real number δ) between points. The definition, introduced by Mikhael Gromov , generalizes the metric properties of classical hyperbolic geometry and of trees .

  9. Hilbert's arithmetic of ends - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_arithmetic_of_ends

    In mathematics, specifically in the area of hyperbolic geometry, Hilbert's arithmetic of ends is a method for endowing a geometric set, the set of ideal points or "ends" of a hyperbolic plane, with an algebraic structure as a field. It was introduced by German mathematician David Hilbert. [1]