Search results
Results From The WOW.Com Content Network
Mathematically, we can state the law of charge conservation as a continuity equation: = ˙ ˙ (). where / is the electric charge accumulation rate in a specific volume at time t, ˙ is the amount of charge flowing into the volume and ˙ is the amount of charge flowing out of the volume; both amounts are regarded as generic functions of time.
The continuity equation says that if charge is moving out of a differential volume (i.e., divergence of current density is positive) then the amount of charge within that volume is going to decrease, so the rate of change of charge density is negative. Therefore, the continuity equation amounts to a conservation of charge.
The conservation of charge, for example, in the notation of Maxwell's equations, + =. where ρ is the free electric charge density (in units of C/m 3); J is the current density = with v as the velocity of the charges.
A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity ...
The conservation of electric charge, by contrast, can be derived by considering Ψ linear in the fields φ rather than in the derivatives. [11]: 593–594 In quantum mechanics, the probability amplitude ψ(x) of finding a particle at a point x is a complex field φ, because it ascribes a complex number to every point in space and time.
The total electric charge of an isolated system remains constant regardless of changes within the system itself. This law is inherent to all processes known to physics and can be derived in a local form from gauge invariance of the wave function. The conservation of charge results in the charge-current continuity equation.
In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. [1] It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume.
Maxwell's equations seem overdetermined, in that they involve six unknowns (the three components of E and B) but eight equations (one for each of the two Gauss's laws, three vector components each for Faraday's and Ampère's circuital laws). (The currents and charges are not unknowns, being freely specifiable subject to charge conservation.)