Search results
Results From The WOW.Com Content Network
In machine learning, backpropagation [1] is a gradient estimation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks.
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Backpropagation through time (BPTT) is a gradient-based technique for training certain types of recurrent neural networks, such as Elman networks. The algorithm was independently derived by numerous researchers.
Backpropagation; Rescorla–Wagner model – the origin of delta rule; References This page was last edited on 27 October 2023, at 04:45 (UTC). ...
Backpropagation of errors in multilayer perceptrons, a technique used in machine learning, is a special case of reverse accumulation. [2] Forward accumulation was introduced by R.E. Wengert in 1964. [13] According to Andreas Griewank, reverse accumulation has been suggested since the late 1960s, but the inventor is unknown. [14]
Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]
Backpropagation through structure (BPTS) is a gradient-based technique for training recursive neural networks, proposed in a 1996 paper written by Christoph Goller and Andreas Küchler. [ 1 ] References
Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning . It was described somewhat cryptically in Richard Feynman 's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando ...