Search results
Results From The WOW.Com Content Network
A bidirectional variant of selection sort (called double selection sort or sometimes cocktail sort due to its similarity to cocktail shaker sort) finds both the minimum and maximum values in the list in every pass. This requires three comparisons per two items (a pair of elements is compared, then the greater is compared to the maximum and the ...
Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the domain. So a method of finding a global maximum (or minimum) is to look at all the local maxima (or minima) in the interior, and also look at the maxima (or minima) of the points on the ...
def ternary_search (f, left, right, absolute_precision)-> float: """Find maximum of unimodal function f() within [left, right]. To find the minimum, reverse the if/else statement or reverse the comparison. """ while abs (right-left) >= absolute_precision: left_third = left + (right-left) / 3 right_third = right-(right-left) / 3 if f (left_third) < f (right_third): left = left_third else: right ...
A special case of this method is the use of the modular product of graphs to reduce the problem of finding the maximum common induced subgraph of two graphs to the problem of finding a maximum clique in their product. [7] In automatic test pattern generation, finding cliques can help to bound the size of a test set. [8]
Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees and the algorithm for finding optimum Huffman trees. Greedy algorithms appear in the network routing as well. Using greedy routing, a message is forwarded to the neighbouring node which is "closest" to the destination.
Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure. The min-max heap property is: each node at an even level in the tree is less than all of its descendants, while each node at an odd level in the tree is greater than all of its descendants. [4]
Range minimum query reduced to the lowest common ancestor problem. Given an array A[1 … n] of n objects taken from a totally ordered set, such as integers, the range minimum query RMQ A (l,r) =arg min A[k] (with 1 ≤ l ≤ k ≤ r ≤ n) returns the position of the minimal element in the specified sub-array A[l … r].
The assignment problem consists of finding, in a weighted bipartite graph, a matching of maximum size, in which the sum of weights of the edges is minimum. If the numbers of agents and tasks are equal, then the problem is called balanced assignment, and the graph-theoretic version is called minimum-cost perfect matching.