When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Incidence (graph) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(graph)

    In graph theory, a vertex is incident with an edge if the vertex is one of the two vertices the edge connects. An incidence is a pair ( u , e ) {\displaystyle (u,e)} where u {\displaystyle u} is a vertex and e {\displaystyle e} is an edge incident with u {\displaystyle u} .

  3. Vertex (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(graph_theory)

    A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...

  4. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    An incidence in a graph is a vertex-edge pair such that the vertex is an endpoint of the edge. incidence matrix The incidence matrix of a graph is a matrix whose rows are indexed by vertices of the graph, and whose columns are indexed by edges, with a one in the cell for row i and column j when vertex i and edge j are incident, and a zero ...

  6. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    The degree or valency of a vertex is the number of edges that are incident to it, where a loop is counted twice. The degree of a graph is the maximum of the degrees of its vertices. In an undirected simple graph of order n , the maximum degree of each vertex is n − 1 and the maximum size of the graph is ⁠ n ( n − 1) / 2 ⁠ .

  7. Degree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Degree_(graph_theory)

    A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .

  8. Vertex (geometry) - Wikipedia

    en.wikipedia.org/wiki/Vertex_(geometry)

    A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]

  9. Graph labeling - Wikipedia

    en.wikipedia.org/wiki/Graph_labeling

    An edge-graceful labeling on a simple graph without loops or multiple edges on p vertices and q edges is a labeling of the edges by distinct integers in {1, …, q} such that the labeling on the vertices induced by labeling a vertex with the sum of the incident edges taken modulo p assigns all values from 0 to p − 1 to the vertices.