Search results
Results From The WOW.Com Content Network
An unordered pair is a finite set; its cardinality (number of elements) is 2 or (if the two elements are not distinct) 1. In axiomatic set theory, the existence of unordered pairs is required by an axiom, the axiom of pairing. More generally, an unordered n-tuple is a set of the form {a 1, a 2,... a n}. [5] [6] [7]
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...
In mathematics and computer science, ... which are unordered pairs of ... , an incidence function mapping every edge to an unordered pair of vertices (that is, an ...
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, always equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional ...
The axiom of pairing asserts that for any two objects, the unordered pair containing those objects exists. upper bound In mathematics, an element that is greater than or equal to every element of a given set, used in the discussion of intervals, sequences, and functions. upward Löwenheim–Skolem theorem
Theorem: If A and B are sets, then there is a set A×B which consists of all ordered pairs (a, b) of elements a of A and b of B. Proof: The singleton set with member a, written {a}, is the same as the unordered pair {a, a}, by the axiom of extensionality. The singleton, the set {a, b}, and then also the ordered pair