When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  3. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    For two polyhedra with the same combinatorial type (that is, the same number E of edges, the same number of faces, and the same number of sides on corresponding faces), there exists a set of E measurements that can establish whether or not the polyhedra are congruent.

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again. Some polyhedra are self-dual, meaning that the dual of the polyhedron is congruent to the original polyhedron. [35] Abstract polyhedra also have duals, obtained by reversing the partial order defining the polyhedron to obtain its dual or opposite order ...

  5. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  6. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

  7. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. As a Catalan solid, it is the dual polyhedron of the cuboctahedron. As a parallelohedron, the rhombic dodecahedron can be used to tesselate its copies in space creating a rhombic dodecahedral honeycomb.

  8. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    The rhombic icosahedron is a zonohedron made up of 20 congruent rhombs. It can be derived from the rhombic triacontahedron by removing 10 middle faces. Even though all the faces are congruent, the rhombic icosahedron is not face-transitive.

  9. Regular polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_polytope

    A regular polyhedron having faces {n} with p faces joining around a vertex is denoted by {n, p}. The nine regular polyhedra are and . {p} is the vertex figure of the polyhedron. A regular 4-polytope having cells {n, p} with q cells joining around an edge is denoted by {n, p, q}.