When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    Choosing a basis, the multiplication operator is represented by its coefficient matrix A, the companion matrix of ƒ(X) for this basis. Since every polynomial can be reduced modulo ƒ(X) to a polynomial of degree n − 1 or lower, the space of residue classes can be identified with the space of polynomials of degree bounded by n − 1.

  3. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  4. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    In the first case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to +∞, and in the second case the line y = mx + n is an oblique asymptote of ƒ(x) when x tends to −∞. An example is ƒ(x) = x + 1/x, which has the oblique asymptote y = x (that is m = 1, n = 0) as seen in the limits

  5. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The function's integral is equal to over any set because the function is equal to zero almost everywhere. If G = { ( x , f ( x ) ) : x ∈ ( 0 , 1 ) } ⊂ R 2 {\displaystyle G=\{\,(x,f(x)):x\in (0,1)\,\}\subset \mathbb {R} ^{2}} is the graph of the restriction of f {\displaystyle f} to ( 0 , 1 ) {\displaystyle (0,1)} , then the box-counting ...

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Nonlinear complementarity problem (NCP) — find x such that x ≥ 0, f(x) ≥ 0 and x T f(x) = 0; Least squares — the objective function is a sum of squares Non-linear least squares; Gauss–Newton algorithm. BHHH algorithm — variant of Gauss–Newton in econometrics; Generalized Gauss–Newton method — for constrained nonlinear least ...

  7. Darboux's theorem (analysis) - Wikipedia

    en.wikipedia.org/wiki/Darboux's_theorem_(analysis)

    A Darboux function is a real-valued function ƒ which has the "intermediate value property": for any two values a and b in the domain of ƒ, and any y between ƒ(a) and ƒ(b), there is some c between a and b with ƒ(c) = y. [4] By the intermediate value theorem, every continuous function on a real interval is a Darboux function. Darboux's ...

  8. Riemann–Stieltjes integral - Wikipedia

    en.wikipedia.org/wiki/Riemann–Stieltjes_integral

    The Riemann-Stieltjes integral is the area of the projection of this fence onto the f(x)-g(x) plane — in effect, its "shadow". The slope of g(x) weights the area of the projection. The values of x for which g(x) has the steepest slope g'(x) correspond to regions of the fence with the greater projection and thereby carry the most weight in the ...

  9. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.