When.com Web Search

  1. Ads

    related to: differential equations calculator with steps

Search results

  1. Results From The WOW.Com Content Network
  2. Predictor–corrector method - Wikipedia

    en.wikipedia.org/wiki/Predictor–corrector_method

    In numerical analysis, predictor–corrector methods belong to a class of algorithms designed to integrate ordinary differential equations – to find an unknown function that satisfies a given differential equation. All such algorithms proceed in two steps:

  3. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).

  4. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.

  5. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    The decisive step in the direction of differential equation models is now the reverse question: In the example of the moving body, let the velocity () be known at every point in time 𝑡 and its position () be determined from this. It is clear that the initial position of the body at a point in time 𝑡 0 must also be known in order to be ...

  6. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.

  7. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods. The procedure for calculating the numerical solution to the initial value problem:

  8. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .

  9. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.