Ads
related to: cable length calculation formula
Search results
Results From The WOW.Com Content Network
Electrical length is widely used with a graphical aid called the Smith chart to solve transmission line calculations. A Smith chart has a scale around the circumference of the circular chart graduated in wavelengths and degrees, which represents the electrical length of the transmission line from the point of measurement to the source or load.
A cable in this usage cable is a thick rope or by transference a chain cable. [1] The OED gives quotations from c. 1400 onwards. A cable's length (often "cable length" or just "cable") is simply the standard length in which cables came, which by 1555 had settled to around 100 fathoms (600 ft; 180 m) or 1 ⁄ 10 nautical mile (0.19 km; 0.12 mi).
A chain hanging from points forms a catenary. The silk on a spider's web forming multiple elastic catenaries.. In physics and geometry, a catenary (US: / ˈ k æ t ən ɛr i / KAT-ən-err-ee, UK: / k ə ˈ t iː n ər i / kə-TEE-nər-ee) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field.
Equivalent circuit of an unbalanced transmission line (such as coaxial cable) where: 2/Z o is the trans-admittance of VCCS (Voltage Controlled Current Source), x is the length of transmission line, Z(s) ≡ Z o (s) is the characteristic impedance, T(s) is the propagation function, γ(s) is the propagation "constant", s ≡ j ω, and j 2 ≡ −1.
Equivalently, it can be defined as the input impedance of a transmission line when its length is infinite. Characteristic impedance is determined by the geometry and materials of the transmission line and, for a uniform line, is not dependent on its length. The SI unit of characteristic impedance is the ohm.
The length constant, (lambda), is a parameter that indicates how far a stationary current will influence the voltage along the cable. The larger the value of λ {\displaystyle \lambda } , the farther the charge will flow.
The propagation delay of a physical link can be calculated by dividing the distance (the length of the medium) in meter by its propagation speed in m/s. Propagation time = Distance / propagation speed. Example: Ethernet communication over a UTP copper cable with maximum distance of 100 meter between computer and switching node results in:
The area in circular mils, A, of a circle with a diameter of d mils, is given by the formula: {} = {}. In Canada and the United States, the Canadian Electrical Code (CEC) and the National Electrical Code (NEC), respectively, use the circular mil to define wire sizes larger than 0000 AWG .