When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.

  3. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  4. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations.

  5. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    That is, the Jacobian of the function is used to transform the rows and columns of the variance-covariance matrix of the argument. Note this is equivalent to the matrix expression for the linear case with J = A {\displaystyle \mathrm {J=A} } .

  6. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    So if it is unknown whether a number n is prime or composite, we can pick a random number a, calculate the Jacobi symbol (⁠ a / n ⁠) and compare it with Euler's formula; if they differ modulo n, then n is composite; if they have the same residue modulo n for many different values of a, then n is "probably prime".

  7. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    That is, the Jacobian of a composite function is the product of the Jacobians of the composed functions (evaluated at the appropriate points). The higher-dimensional chain rule is a generalization of the one-dimensional chain rule. If k, m, and n are 1, so that f : R → R and g : R → R, then the Jacobian matrices of f and g are 1 × 1.

  8. Basic reproduction number - Wikipedia

    en.wikipedia.org/wiki/Basic_reproduction_number

    Methods used to calculate include the survival function, rearranging the largest eigenvalue of the Jacobian matrix, the next-generation method, [22] calculations from the intrinsic growth rate, [23] existence of the endemic equilibrium, the number of susceptibles at the endemic equilibrium, the average age of infection [24] and the final size ...

  9. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Thus one can only calculate the numerical rank by making a decision which of the eigenvalues are close enough to zero. Pseudo-inverse The pseudo inverse of a matrix A {\displaystyle A} is the unique matrix X = A + {\displaystyle X=A^{+}} for which A X {\displaystyle AX} and X A {\displaystyle XA} are symmetric and for which A X A = A , X A X ...