Search results
Results From The WOW.Com Content Network
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
Generally, in anaerobic respiration sugars are broken down into carbon dioxide and other waste products that are dictated by the oxidant the cell uses. Whereas in aerobic respiration the oxidant is always oxygen, in anaerobic respiration it varies. Each oxidant produces a different waste product, such as nitrite, succinate, sulfide, methane ...
Mitochondrial matrix has a pH of about 7.8, which is higher than the pH of the intermembrane space of the mitochondria, which is around 7.0–7.4. [5] Mitochondrial DNA was discovered by Nash and Margit in 1963. One to many double stranded mainly circular DNA is present in mitochondrial matrix. Mitochondrial DNA is 1% of total DNA of a cell.
The energy yield of anaerobic respiration and fermentation (i.e. the number of ATP molecules generated) is less than in aerobic respiration. [8] This is why facultative anaerobes , which can metabolise energy both aerobically and anaerobically, preferentially metabolise energy aerobically.
A mitochondrion (pl. mitochondria) is an organelle found in the cells of most eukaryotes, such as animals, plants and fungi.Mitochondria have a double membrane structure and use aerobic respiration to generate adenosine triphosphate (ATP), which is used throughout the cell as a source of chemical energy. [2]
The enzyme cytochrome c oxidase or Complex IV (was EC 1.9.3.1, now reclassified as a translocase EC 7.1.1.9) is a large transmembrane protein complex found in bacteria, archaea, and the mitochondria of eukaryotes. [1] It is the last enzyme in the respiratory electron transport chain of cells located in the membrane.
However, side products are considered waste and removed from the cell. [2] Different metabolic pathways function in the position within a eukaryotic cell and the significance of the pathway in the given compartment of the cell. [3] For instance, the electron transport chain and oxidative phosphorylation all take place in the mitochondrial membrane.