When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.

  3. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...

  4. Chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_test

    Pearson's chi-squared test is used to determine whether there is a statistically significant difference between the expected frequencies and the observed frequencies in one or more categories of a contingency table. For contingency tables with smaller sample sizes, a Fisher's exact test is used instead.

  5. Yates's correction for continuity - Wikipedia

    en.wikipedia.org/wiki/Yates's_correction_for...

    This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =

  6. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    Pearson's chi-square test uses a measure of goodness of fit which is the sum of differences between observed and expected outcome frequencies (that is, counts of observations), each squared and divided by the expectation: = = where:

  7. Sample ratio mismatch - Wikipedia

    en.wikipedia.org/wiki/Sample_ratio_mismatch

    Sample ratio mismatches can be detected using a chi-squared test. [3] Using methods to detect SRM can help non-experts avoid making discussions using biased data. [4] If the sample size is large enough, even a small discrepancy between the observed and expected group sizes can invalidate the results of an experiment. [5] [6]

  8. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    Given the null hypothesis that the observed frequencies result from random sampling from a distribution with the given expected frequencies, the distribution of G is approximately a chi-squared distribution, with the same number of degrees of freedom as in the corresponding chi-squared test.

  9. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    The model fits well when the residuals (i.e., observed-expected) are close to 0, that is the closer the observed frequencies are to the expected frequencies the better the model fit. If the likelihood ratio chi-square statistic is non-significant, then the model fits well (i.e., calculated expected frequencies are close to observed frequencies).