Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
The graph of a function with a horizontal (y = 0), vertical (x = 0), and oblique asymptote (purple line, given by y = 2x) A curve intersecting an asymptote infinitely many times In analytic geometry , an asymptote ( / ˈ æ s ɪ m p t oʊ t / ) of a curve is a line such that the distance between the curve and the line approaches zero as one or ...
The points P 1, P 2, and P 3 (in blue) are collinear and belong to the graph of x 3 + 3 / 2 x 2 − 5 / 2 x + 5 / 4 . The points T 1, T 2, and T 3 (in red) are the intersections of the (dotted) tangent lines to the graph at these points with the graph itself. They are collinear too.
The slope a measures the rate of change of the output y per unit change in the input x. In the graph, moving one unit to the right (increasing x by 1) moves the y-value up by a: that is, (+) = +. Negative slope a indicates a decrease in y for each increase in x.
graph of a parametric equation x = cos t and y = sin t; same as (x,y) = (cos t, sin t) graph of a point in two-dimensional Euclidean space. graph of an ordered pair, or 2- tuple (looks like a point in a plane) graph of a data set, where x = value in column A and y = value in column B; graph of a sequence. graph of an integer sequence
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
The third essential description of a curve is the parametric one, where the x- and y-coordinates of curve points are represented by two functions x(t), y(t) both of whose functional forms are explicitly stated, and which are dependent on a common parameter . Examples of implicit curves include:
According to Brooks' theorem every connected cubic graph other than the complete graph K 4 has a vertex coloring with at most three colors. Therefore, every connected cubic graph other than K 4 has an independent set of at least n/3 vertices, where n is the number of vertices in the graph: for instance, the largest color class in a 3-coloring has at least this many vertices.