When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A generalization of the concept of Pythagorean triples is the search for triples of positive integers a, b, and c, such that a n + b n = c n, for some n strictly greater than 2. Pierre de Fermat in 1637 claimed that no such triple exists, a claim that came to be known as Fermat's Last Theorem because it took longer than any other conjecture by ...

  3. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    There is a method to construct all Pythagorean triples that contain a given positive integer x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus . [ 13 ]

  4. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  6. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    There are infinitely many such triples, [19] and methods for generating such triples have been studied in many cultures, beginning with the Babylonians [20] and later ancient Greek, Chinese, and Indian mathematicians. [1] Mathematically, the definition of a Pythagorean triple is a set of three integers (a, b, c) that satisfy the equation [21] a ...

  7. Glossary of number theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_number_theory

    1. A prime number is a positive integer with no divisors other than itself and 1. 2. The prime number theorem describes the asymptotic distribution of prime numbers. profinite A profinite integer is an element in the profinite completion ^ of along all integers. Pythagorean triple

  8. Metallic mean - Wikipedia

    en.wikipedia.org/wiki/Metallic_mean

    Metallic Ratios in Primitive Pythagorean Triangles. Metallic means are precisely represented by some primitive Pythagorean triples, a 2 + b 2 = c 2, with positive integers a < b < c. In a primitive Pythagorean triple, if the difference between hypotenuse c and longer leg b is 1, 2 or 8, such Pythagorean triple accurately represents one ...

  9. Boolean Pythagorean triples problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_Pythagorean...

    The problem asks if it is possible to color each of the positive integers either red or blue, so that no Pythagorean triple of integers a, b, c, satisfying + = are all the same color. For example, in the Pythagorean triple 3, 4, and 5 ( 3 2 + 4 2 = 5 2 {\displaystyle 3^{2}+4^{2}=5^{2}} ), if 3 and 4 are colored red, then 5 must be colored blue.