Search results
Results From The WOW.Com Content Network
In developmental biology, organs that developed in the embryo in the same manner and from similar origins, such as from matching primordia in successive segments of the same animal, are serially homologous. Examples include the legs of a centipede, the maxillary and labial palps of an insect, and the spinous processes of successive vertebrae in ...
Homologous structures in the external genitalia. This list of related male and female reproductive organs shows how the male and female reproductive organs and the development of the reproductive system are related, sharing a common developmental path. This makes them biological homologues. These organs differentiate into the respective sex ...
In both sexes, the gonads go on to form the testes and ovaries; because they are derived from the same undeveloped structure, they are considered homologous organs. There are a number of other homologous structures shared between male and female reproductive systems.
In arthropods, an appendage refers to any of the homologous body parts that may extend from a body segment, including antennae, mouthparts (including mandibles, maxillae and maxillipeds), gills, locomotor legs (pereiopods for walking, and pleopods for swimming), sexual organs , and parts of the tail . Typically, each body segment carries one ...
Insect mouthparts show many examples of convergent evolution. The mouthparts of different insect groups consist of a set of homologous organs, specialised for the dietary intake of that insect group. Convergent evolution of many groups of insects led from original biting-chewing mouthparts to different, more specialised, derived function types.
Ileum, caecum and colon of rabbit, showing Appendix vermiformis on fully functional caecum The human vermiform appendix on the vestigial caecum. The appendix was once believed to be a vestige of a redundant organ that in ancestral species had digestive functions, much as it still does in extant species in which intestinal flora hydrolyze cellulose and similar indigestible plant materials. [10]
The pattern of limb bones called pentadactyl limb is an example of homologous structures (Fig. 2e). It is found in all classes of tetrapods (i.e. from amphibians to mammals). It can even be traced back to the fins of certain fossil fishes from which the first amphibians evolved such as tiktaalik.
All vertebrate forelimbs are homologous, meaning that they all evolved from the same structures. For example, the flipper of a turtle or of a dolphin, the arm of a human, the foreleg of a horse, and the wings of both bats and birds are ultimately homologous, despite the large differences between them. [1]