When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    Elimination theory culminated with the work of Leopold Kronecker, and finally Macaulay, who introduced multivariate resultants and U-resultants, providing complete elimination methods for systems of polynomial equations, which are described in the chapter on Elimination theory in the first editions (1930) of van der Waerden's Moderne Algebra.

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    The following algorithm is essentially a modified form of Gaussian elimination. Computing an LU decomposition using this algorithm requires floating-point operations, ignoring lower-order terms. Partial pivoting adds only a quadratic term; this is not the case for full pivoting. [13]

  5. The Nine Chapters on the Mathematical Art - Wikipedia

    en.wikipedia.org/wiki/The_Nine_Chapters_on_the...

    The solution method called "Fang Cheng Shi" is best known today as Gaussian elimination. Among the eighteen problems listed in the Fang Cheng chapter, some are equivalent to simultaneous linear equations with two unknowns, some are equivalent to simultaneous linear equations with 3 unknowns, and the most complex example analyzes the solution to ...

  6. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    To find the interpolation polynomial p(x) in the vector space P(n) of polynomials of degree n, we may use the usual monomial basis for P(n) and invert the Vandermonde matrix by Gaussian elimination, giving a computational cost of O(n 3) operations.

  7. Gauss–Newton algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Newton_algorithm

    The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function .

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Once the eigenvalues are computed, the eigenvectors could be calculated by solving the equation (), = using Gaussian elimination or any other method for solving matrix equations. However, in practical large-scale eigenvalue methods, the eigenvectors are usually computed in other ways, as a byproduct of the eigenvalue computation.

  9. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    Gaussian elimination; Gauss–Jordan elimination: solves systems of linear equations; Gauss–Seidel method: solves systems of linear equations iteratively; Levinson recursion: solves equation involving a Toeplitz matrix; Stone's method: also known as the strongly implicit procedure or SIP, is an algorithm for solving a sparse linear system of ...