Search results
Results From The WOW.Com Content Network
English: This PDF file contains a plot of the sphere function in 3D. This is a test function used in mathematical optimization. This is a test function used in mathematical optimization. x 2 + y 2 {\displaystyle x^{2}+y^{2}}
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
Domain coloring plot of the function f(x) = (x 2 − 1)(x − 2 − i) 2 / x 2 + 2 + 2i , using the structured color function described below. In complex analysis, domain coloring or a color wheel graph is a technique for visualizing complex functions by assigning a color to each point of the complex plane. By assigning points on the ...
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.
The Koch snowflake (also known as the Koch curve, Koch star, or Koch island [1] [2]) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" [3] by the Swedish mathematician Helge von Koch.
Color representation of the trigamma function, ψ 1 (z), in a rectangular region of the complex plane.It is generated using the domain coloring method.. In mathematics, the trigamma function, denoted ψ 1 (z) or ψ (1) (z), is the second of the polygamma functions, and is defined by
Parabolic cylinder () function appears naturally in the Schrödinger equation for the one-dimensional quantum harmonic oscillator (a quantum particle in the oscillator potential), [+] = (), where is the reduced Planck constant, is the mass of the particle, is the coordinate of the particle, is the frequency of the oscillator, is the energy, and () is the particle's wave-function.