Search results
Results From The WOW.Com Content Network
Acetanilide can be produced by reacting acetic anhydride with aniline: [7]. C 6 H 5 NH 2 + (CH 3 CO) 2 O → C 6 H 5 NHCOCH 3 + CH 3 COOH. The preparation used to be a traditional experiment in introductory organic chemistry lab classes, [8] but it has now been widely replaced by the preparation of either paracetamol or aspirin, both of which teach the same practical techniques (especially ...
The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]
Since steps 6–10 occur twice per glucose molecule, this leads to a net production of ATP. Summary of aerobic respiration Glycolysis is the metabolic pathway that converts glucose ( C 6 H 12 O 6 ) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol ).
The polyol pathway is a two-step process that converts glucose to fructose. [1] In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway. The pathway is implicated in diabetic complications, especially in microvascular damage to the retina, [2] kidney, [3 ...
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [ 2 ] [ better source needed ] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration.
In the liver, muscles, and the kidney, this process occurs to provide glucose when necessary. [12] A single glucose molecule is cleaved from a branch of glycogen, and is transformed into glucose-1-phosphate during this process. [1] This molecule can then be converted to glucose-6-phosphate, an intermediate in the glycolysis pathway. [1]
The anti-diabetic drug metformin reduces blood glucose primarily through inhibition of gluconeogenesis, overcoming the failure of insulin to inhibit gluconeogenesis due to insulin resistance. [32] Studies have shown that the absence of hepatic glucose production has no major effect on the control of fasting plasma glucose concentration.
In this phase, two molecules of NADP + are reduced to NADPH, utilizing the energy from the conversion of glucose-6-phosphate into ribulose 5-phosphate. Oxidative phase of pentose phosphate pathway. Glucose-6-phosphate (1), 6-phosphoglucono-δ-lactone (2), 6-phosphogluconate (3), ribulose 5-phosphate (4)