Search results
Results From The WOW.Com Content Network
Oxidative phosphorylation uses these molecules and O 2 to produce ATP, which is used throughout the cell whenever energy is needed. During oxidative phosphorylation, electrons are transferred from the electron donors to a series of electron acceptors in a series of redox reactions ending in oxygen, whose reaction releases half of the total ...
The ATP generated in this process is made by substrate-level phosphorylation, which does not require oxygen. Fermentation is less efficient at using the energy from glucose: only 2 ATP are produced per glucose, compared to the 38 ATP per glucose nominally produced by aerobic respiration. Glycolytic ATP, however, is produced more quickly.
The last process in aerobic respiration is oxidative phosphorylation, also known as the electron transport chain. Here NADH and FADH 2 deliver their electrons to oxygen and protons at the inner membranes of the mitochondrion, facilitating the production of ATP. Oxidative phosphorylation contributes the majority of the ATP produced, compared to ...
Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).
If the concentration of oxygen increases, pyruvate is instead converted to acetyl CoA, used in the citric acid cycle, and undergoes oxidative phosphorylation. Per glucose, 10 NADH and 2 FADH 2 are produced in cellular respiration for a significant amount of proton pumping to produce a proton gradient utilized by ATP Synthase. While the exact ...
The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F 1-part projects into the mitochondrial matrix. By pumping proton cations into the matrix, the ATP-synthase converts ADP into ATP.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This molecule acts as a way for the cell to transfer the energy released by catabolism to the energy-requiring reactions that make up anabolism. Catabolism is a destructive metabolism and anabolism is a constructive metabolism. Catabolism, therefore, provides the chemical energy necessary for the maintenance and growth of cells.