Search results
Results From The WOW.Com Content Network
Graph of a polynomial of degree 5, ... In mathematics, a quintic function is a function of the form () ... Using the negative case of the square root yields, after ...
The graph of the function f(x) = √x, made up of half a parabola with a vertical directrix. The principal square root function () = (usually just referred to as the "square root function") is a function that maps the set of nonnegative real numbers onto itself.
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.
Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose ...
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
So one continuous motion in the complex plane has transformed the positive square root e 0 = 1 into the negative square root e iπ = −1. This problem arises because the point z = 0 has just one square root, while every other complex number z ≠ 0 has exactly two square roots.
It is a consequence of the first two equations that r 1 + r 2 is a square root of α and that r 3 + r 4 is the other square root of α. For the same reason, r 1 + r 3 is a square root of β, r 2 + r 4 is the other square root of β, r 1 + r 4 is a square root of γ, r 2 + r 3 is the other square root of γ. Therefore, the numbers r 1, r 2, r 3 ...