Search results
Results From The WOW.Com Content Network
Data type validation is customarily carried out on one or more simple data fields. The simplest kind of data type validation verifies that the individual characters provided through user input are consistent with the expected characters of one or more known primitive data types as defined in a programming language or data storage and retrieval ...
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
Example of a spreadsheet holding data about a group of audio tracks. A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. [1] [2] [3] Spreadsheets were developed as computerized analogs of paper accounting worksheets. [4] The program operates on data entered in cells of a table.
Data lineage can improve efficiency in business intelligence BI processes. [4] Data lineage can be represented visually to discover the data flow and movement from its source to destination via various changes and hops on its way in the enterprise environment. This includes how the data is transformed along the way, how the representation and ...
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").
Cross-validation. By splitting the data into multiple parts, we can check if an analysis (like a fitted model) based on one part of the data generalizes to another part of the data as well. [144] Cross-validation is generally inappropriate, though, if there are correlations within the data, e.g. with panel data. [145]
Inspection is a verification method that is used to compare how correctly the conceptual model matches the executable model. Teams of experts, developers, and testers will thoroughly scan the content (algorithms, programming code, documents, equations) in the original conceptual model and compare with the appropriate counterpart to verify how closely the executable model matches. [1]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]