When.com Web Search

  1. Ad

    related to: piecewise cubic hermite interpolating polynomial worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Cubic Hermite spline - Wikipedia

    en.wikipedia.org/wiki/Cubic_Hermite_spline

    The four Hermite basis functions. The interpolant in each subinterval is a linear combination of these four functions. On the unit interval [,], given a starting point at = and an ending point at = with starting tangent at = and ending tangent at =, the polynomial can be defined by = (+) + (+) + (+) + (), where t ∈ [0, 1].

  3. Monotone cubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Monotone_cubic_interpolation

    In the mathematical field of numerical analysis, monotone cubic interpolation is a variant of cubic interpolation that preserves monotonicity of the data set being interpolated. Monotonicity is preserved by linear interpolation but not guaranteed by cubic interpolation .

  4. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...

  5. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    Often a special name was chosen for a type of spline satisfying two or more of the main items above. For example, the Hermite spline is a spline that is expressed using Hermite polynomials to represent each of the individual polynomial pieces. These are most often used with n = 3; that is, as Cubic Hermite splines.

  6. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Spline interpolationinterpolation by piecewise polynomials Spline (mathematics) — the piecewise polynomials used as interpolants; Perfect spline — polynomial spline of degree m whose mth derivate is ±1; Cubic Hermite spline. Centripetal Catmull–Rom spline — special case of cubic Hermite splines without self-intersections or cusps

  7. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  8. Kochanek–Bartels spline - Wikipedia

    en.wikipedia.org/wiki/Kochanek–Bartels_spline

    In mathematics, a Kochanek–Bartels spline or Kochanek–Bartels curve is a cubic Hermite spline with tension, bias, and continuity parameters defined to change the behavior of the tangents. Given n + 1 knots ,

  9. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing, bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling, when speed is not an issue.