Search results
Results From The WOW.Com Content Network
Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...
Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C ...
Homogeneous coordinates are not uniquely determined by a point, so a function defined on the coordinates, say (,,), does not determine a function defined on points as with Cartesian coordinates. But a condition f ( x , y , z ) = 0 {\displaystyle f(x,y,z)=0} defined on the coordinates, as might be used to describe a curve, determines a condition ...
The center T of the twelve-point sphere also lies on the Euler line. Unlike its triangular counterpart, this center lies one third of the way from the Monge point M towards the circumcenter. Also, an orthogonal line through T to a chosen face is coplanar with two other orthogonal lines to the same face. The first is an orthogonal line passing ...
The vertices of triangles are associated not only with spatial position but also with other values used to render the object correctly. Most attributes of a vertex represent vectors in the space to be rendered. These vectors are typically 1 (x), 2 (x, y), or 3 (x, y, z) dimensional and can include a fourth homogeneous coordinate (w).
A real-valued function f of three real variables a, b, c may have the following properties: Homogeneity: f(ta,tb,tc) = t n f(a,b,c) for some constant n and for all t > 0. Bisymmetry in the second and third variables: f(a,b,c) = f(a,c,b). If a non-zero f has both these properties it is called a triangle center function.
The centers X 3, X 4, X 22, X 24, X 40 make specific reference to acute triangles, namely that region of T where +, +, +. When differentiating between the Fermat point and X 13 the domain of triangles with an angle exceeding 2π/3 is important; in other words, triangles for which any of the following is true:
In geometry, a Cartesian coordinate system (UK: / k ɑːr ˈ t iː zj ə n /, US: / k ɑːr ˈ t iː ʒ ə n /) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines ...