Search results
Results From The WOW.Com Content Network
Every irreducible complex algebraic curve is birational to a unique smooth projective curve, so the theory for curves is trivial. The case of surfaces was first investigated by the geometers of the Italian school around 1900; the contraction theorem of Guido Castelnuovo essentially describes the process of constructing a minimal model of any smooth projective surface.
The Gromov-Witten invariants of smooth projective varieties can be defined entirely within algebraic geometry. The classical enumerative geometry of plane curves and of rational curves in homogeneous spaces are both captured by GW invariants.
2-dimensional section of Reeb foliation 3-dimensional model of Reeb foliation. In mathematics (differential geometry), a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space R n into the cosets x + R p of the standardly embedded ...
Gneiss, a foliated metamorphic rock. Quartzite, a non-foliated metamorphic rock. Foliation in geology refers to repetitive layering in metamorphic rocks. [1] Each layer can be as thin as a sheet of paper, or over a meter in thickness. [1] The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. [1]
In contrast to positively curved varieties such as del Pezzo surfaces, a complex algebraic K3 surface X is not uniruled; that is, it is not covered by a continuous family of rational curves. On the other hand, in contrast to negatively curved varieties such as surfaces of general type, X contains a large discrete set of rational curves ...
Equivalently, a variety is rationally connected if every two points are connected by a rational curve contained in the variety. [3] This definition differs from that of path connectedness only by the nature of the path, but is very different, as the only algebraic curves which are rationally connected are the rational ones.
Jacobians of curves are naturally equipped with a principal polarisation as soon as one picks an arbitrary rational base point on the curve, and the curve can be reconstructed from its polarised Jacobian when the genus is >. Not all principally polarised abelian varieties are Jacobians of curves; see the Schottky problem.
The Bombieri–Lang conjecture is an analogue for surfaces of Faltings's theorem, which states that algebraic curves of genus greater than one only have finitely many rational points. [ 8 ] If true, the Bombieri–Lang conjecture would resolve the ErdÅ‘s–Ulam problem , as it would imply that there do not exist dense subsets of the Euclidean ...