Search results
Results From The WOW.Com Content Network
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]
The Hugging Face Hub is a platform (centralized web service) for hosting: [19] Git-based code repositories, including discussions and pull requests for projects. models, also with Git-based version control; datasets, mainly in text, images, and audio;
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.
In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
SimplE [22]: This model is the improvement of canonical polyadic decomposition (CP), in which an embedding vector for the relation and two independent embedding vectors for each entity are learned, depending on whether it is a head or a tail in the knowledge graph fact. [22]
Spatial embedding is one of feature learning techniques used in spatial analysis where points, lines, polygons or other spatial data types. [ 1 ] representing geographic locations are mapped to vectors of real numbers.
An embedded graph uniquely defines cyclic orders of edges incident to the same vertex. The set of all these cyclic orders is called a rotation system.Embeddings with the same rotation system are considered to be equivalent and the corresponding equivalence class of embeddings is called combinatorial embedding (as opposed to the term topological embedding, which refers to the previous ...