Search results
Results From The WOW.Com Content Network
The Frank–Starling law of the heart (also known as Starling's law and the Frank–Starling mechanism) represents the relationship between stroke volume and end diastolic volume. [1] The law states that the stroke volume of the heart increases in response to an increase in the volume of blood in the ventricles, before contraction (the end ...
Preload recruitable stroke work (PRSW) is determined by the linear regression of stroke work with the end-diastolic volume. The slope of the PRSW relationship is a highly linear index of myocardial contractility that is insensitive to preload and afterload.
However, the relationship is not simple because of the restriction of the term preload to single myocytes. Preload can still be approximated by the inexpensive echocardiographic measurement end-diastolic volume or EDV. Preload increases with exercise (slightly), increasing blood volume (as in edema, excessive blood transfusion (overtransfusion ...
In cardiovascular physiology, stroke volume (SV) is the volume of blood pumped from the ventricle per beat. Stroke volume is calculated using measurements of ventricle volumes from an echocardiogram and subtracting the volume of the blood in the ventricle at the end of a beat (called end-systolic volume [note 1]) from the volume of blood just prior to the beat (called end-diastolic volume).
The right ventricular end-diastolic volume (RVEDV) ranges between 100 and 160 mL. [5] The right ventricular end-diastolic volume index (RVEDVI) is calculated by RVEDV/BSA and ranges between 60 and 100 mL/m 2. [5]
The horizontal axis of Guyton diagram represents right atrial pressure or central venous pressure, and the vertical axis represents cardiac output or venous return. The red curve sloping upward to the right is the cardiac output curve, and the blue curve sloping downward to the right is the venous return curve.
Many of the factors that regulate the heart rate also affect cardiac function by altering the stroke volume. While a number of variables are involved, stroke volume is dependent upon the difference between end diastolic volume and end systolic volume. The three primary factors involved are preload, afterload and contractility. [1]
An increase in contractility tends to increase stroke volume and thus a secondary increase in preload. An increase in preload results in an increased force of contraction by Starling's law of the heart; this does not require a change in contractility. An increase in afterload will increase contractility (through the Anrep effect). [4]