Search results
Results From The WOW.Com Content Network
When cascading flip-flops which share the same clock (as in a shift register), it is important to ensure that the t CO of a preceding flip-flop is longer than the hold time (t h) of the following flip-flop, so data present at the input of the succeeding flip-flop is properly "shifted in" following the active edge of the clock.
Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed. The static qualifier differentiates SRAM from dynamic random-access memory (DRAM):
Low power flip-flops [1] are flip-flops that are designed for low-power electronics, such as smartphones and notebooks. A flip-flop, or latch, is a circuit that has two stable states and can be used to store state information.
A shift register is a type of digital circuit using a cascade of flip-flops where the output of one flip-flop is connected to the input of the next. They share a single clock signal, which causes the data stored in the system to shift from one location to the next.
Modern random-access memory (RAM) uses MOS field-effect transistors (MOSFETs) as flip-flops, along with MOS capacitors for certain types of RAM. The SRAM memory cell is a type of flip-flop circuit, typically implemented using MOSFETs. These require very low power to maintain the stored value when not being accessed.
The output of a flip-flop is constant until a pulse is applied to its "clock" input, upon which the input of the flip-flop is latched into its output. In a synchronous logic circuit, an electronic oscillator called the clock generates a string (sequence) of pulses, the "clock signal".
In digital electronics, especially computing, hardware registers are circuits typically composed of flip-flops, often with many characteristics similar to memory, such as: [citation needed] The ability to read or write multiple bits at a time, and; Using an address to select a particular register in a manner similar to a memory address.
An edge-triggered flip-flop can be created by arranging two gated latches in a master–slave configuration. It is so named because the master latch controls the slave latch's value and forces the slave latch to hold its value, as the slave latch always copies its new value from the master latch.