Search results
Results From The WOW.Com Content Network
A great example of using skeletonization on an image is processing fingerprints. This can be quickly accomplished using bwmorph; a built-in Matlab function which will implement the Skeletonization Morphology technique to the image. The image to the right shows the extent of what skeleton morphology can accomplish.
Digital image processing is the use of a digital computer to process digital images through an algorithm. [ 1 ] [ 2 ] As a subcategory or field of digital signal processing , digital image processing has many advantages over analog image processing .
The pruning algorithm is a technique used in digital image processing based on mathematical morphology. [1] It is used as a complement to the skeleton and thinning algorithms to remove unwanted parasitic components (spurs). In this case 'parasitic' components refer to branches of a line which are not key to the overall shape of the line and ...
In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more.This is accomplished by doing a convolution between the kernel and an image.
In mathematical morphology and digital image processing, a top-hat transform is an operation that extracts small elements and details from given images.There exist two types of top-hat transform: the white top-hat transform is defined as the difference between the input image and its opening by some structuring element, while the black top-hat transform is defined dually as the difference ...
In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an image by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce image noise and reduce detail.
A function W is a watershed of a function F if and only if W ≤ F and W preserves the contrast between the regional minima of F; where the contrast between two regional minima M 1 and M 2 is defined as the minimal altitude to which one must climb in order to go from M 1 to M 2. [7] An efficient algorithm is detailed in the paper. [8] Watershed ...
Its primary use is to execute algorithms for processing multiple images at a time, incorporating various algorithmic and parameter variations. The program determines a suitable algorithm for pre-processing, segmenting, and post-processing a set of images for a specific application to distinguish crucial regions of interest within the image.