When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    The real period is, of course, the time it takes the pendulum to go through one full cycle. Paul Appell pointed out a physical interpretation of the imaginary period: [ 16 ] if θ 0 is the maximum angle of one pendulum and 180° − θ 0 is the maximum angle of another, then the real period of each is the magnitude of the imaginary period of ...

  3. Kater's pendulum - Wikipedia

    en.wikipedia.org/wiki/Kater's_pendulum

    Repeatedly timing each period of a Kater pendulum, and adjusting the weights until they were equal, was time-consuming and error-prone. Friedrich Bessel showed in 1826 that this was unnecessary. As long as the periods measured from each pivot, T 1 and T 2, are close in value, the period T of the equivalent simple pendulum can be calculated from ...

  4. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    The period increases asymptotically (to infinity) as θ 0 approaches π radians (180°), because the value θ 0 = π is an unstable equilibrium point for the pendulum. The true period of an ideal simple gravity pendulum can be written in several different forms (see pendulum (mechanics)), one example being the infinite series: [11] [12

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Simple pendulum. Since the rod is rigid, the position of the bob is constrained according to the equation f ( x , y ) = 0 , the constraint force C is the tension in the rod. Again the non-constraint force N in this case is gravity.

  6. Phase space - Wikipedia

    en.wikipedia.org/wiki/Phase_space

    Illustration of how a phase portrait would be constructed for the motion of a simple pendulum Time-series flow in phase space specified by the differential equation of a pendulum. The X axis corresponds to the pendulum's position, and the Y axis its speed.

  7. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    When calculating the period of a simple pendulum, the small-angle approximation for sine is used to allow the resulting differential equation to be solved easily by comparison with the differential equation describing simple harmonic motion.

  8. Buckingham π theorem - Wikipedia

    en.wikipedia.org/wiki/Buckingham_π_theorem

    We wish to determine the period of small oscillations in a simple pendulum. It will be assumed that it is a function of the length L , {\displaystyle L,} the mass M , {\displaystyle M,} and the acceleration due to gravity on the surface of the Earth g , {\displaystyle g,} which has dimensions of length divided by time squared.

  9. Center of percussion - Wikipedia

    en.wikipedia.org/wiki/Center_of_percussion

    The same point is called the center of oscillation for the object suspended from the pivot as a pendulum, meaning that a simple pendulum with all its mass concentrated at that point will have the same period of oscillation as the compound pendulum.